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ABSTRACT. The Lp boundedness theory of convolution operators is
based on an initial L2 → L2 estimate derived from the Fourier transform.
The corresponding theory of multilinear operators lacks such a simple
initial estimate in view of the unavailability of Plancherel’s identity in
this setting, and up to now it has not been clear what a natural initial
estimate might be. In this work we obtain initial L2 × ·· ·×L2 → L2/m

estimates for three types of important multilinear operators: rough sin-
gular integrals, multipliers of Hörmander type, and multipliers whose
derivatives satisfy qualitative estimates. These estimates lay the founda-
tion for the derivation of other Lp estimates for such operators.

1. INTRODUCTION AND PRELIMINARIES

The systematic study of multilinear operators in harmonic analysis was
initiated by Coifman and Meyer in the seventies. Many important multilin-
ear operators can be written as

T ( f1, . . . , fm)(x) =W ∗ ( f1 ⊗·· ·⊗ fm)(x, . . . ,x), x ∈ Rn,

where f j are Schwartz functions on Rn, W is a tempered distribution on
(Rn)m, and ( f1 ⊗ ·· · ⊗ fm)(x1, . . . ,xm) = f1(x1) · · · fm(xm). Alternatively
T ( f1, . . . , fm)(x) can be expressed as

(1)
∫
Rn

· · ·
∫
Rn

f̂1(ξ1) · · · f̂m(ξm)Ŵ (ξ1, . . . ,ξm)e2πi⟨x,ξ1+···+ξm⟩dξ1 · · ·dξn,

where f̂ j(ξ ) =
∫
Rn f j(x)e−2πi⟨x,ξ ⟩dx denotes the Fourier transform of f j and

Ŵ is the distributional Fourier transform of W , which must be an L∞ func-
tion if T is bounded from Lp1(Rn)× ·· · × Lpm(Rn) to Lp(Rn) for some
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choice of indices that satisfy 1/p = 1/p1 + · · ·+1/pm. If such an estimate
holds for T , then σ := Ŵ is called a multilinear Fourier multiplier, and the
operator in (1) is also denoted by Tσ ( f1, . . . , fm). The first important re-
sult concerning multilinear Fourier multipliers is a nontrivial adaptation of
Mihlin’s multiplier condition, obtained by Coifman and Meyer [4]. The
proof they gave is based on decomposing the multiplier as a sum of prod-
ucts of linear operators via Littlewood-Paley and Fourier series expansions.
This powerful idea has essentially been the only technique available in this
area until the appearance of the wave-packet decompositions in the work of
Lacey and Thiele [28, 29] on the bilinear Hilbert transform.

If the distribution W has the form

W = p.v.
1

|(y1, . . . ,ym)|mn Ω

( (y1, . . . ,ym)

|(y1, . . . ,ym)|

)

for some integrable function Ω on the sphere Smn−1 with integral zero, then
T is called an m-linear homogeneous singular. The associated operator is
bounded if Ω is smooth but it could be unbounded if Ω is merely integrable;
see [20]. In this paper we focus on the intermediate situation where Ω lies in
Lq for some q ∈ (1,∞]; these Ω’s give rise to rough m-linear homogeneous
singular integrals. The study of bilinear homogeneous singular integrals
was initiated by Coifman and Meyer in [5] who addressed the case where
Ω is a function of bounded variation. The boundedness of T in the more
difficult case when Ω is merely in L∞ was not solved until four decades
later in [17] in terms of wavelet decompositions. Prior to that, the first
author and Torres [23], [24] had proved boundedness for T for any m when
Ω satisfies a Lipschitz condition on the sphere. In the case m = 1 the known
results are much better. For instance, Calderón and Zygmund [3] showed
that T is bounded in Lp(Rn) for 1 < p < ∞ if Ω ∈ L logL(Sn−1). This result
was improved by Coifman and Weiss [6] under the less restrictive condition
that Ω belongs to the Hardy space H1(Sn−1).

One fundamental difference between linear convolution operators and
multilinear convolution operators of type (1) is an initial estimate. In the
linear case the initial estimate is usually L2 → L2 and this is obtained by
Plancherel’s identity. There is not a straightforward initial estimate for mul-
tilinear operators and in most times, it is difficult to find one. Inspired by
[17], the first two authors and Slavı́ková [19] obtained a bilinear substitute
of the Plancherel criterion for L2 ×L2 → L1 boundedness for multipliers in
Lq(Rn) (0 < q < 4) with sufficiently many bounded derivatives. This re-
sult has also been proved by Kato, Miyachi, and Tomita [26] and has found
many applications; see for instance [19, 33].
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Overcoming the combinatorial complexity that arises from multilinearity,
in this paper we develop a method that yields the crucial

m times︷ ︸︸ ︷
L2(Rn)×·· ·×L2(Rn)→ L2/m(Rn)

estimates for a variety of m-linear operators, including rough homogeneous
singular integrals and multipliers. Our results contribute to the recent surge
of activity in the theory of rough multilinear singular integrals, see for in-
stance [7, 10, 11, 19, 25, 26].

We first present a sharp L2 ×·· ·×L2 → L2/m boundedness criterion for
a multiplier with bounded derivatives up to a certain order. This provides a
multilinear extension of the main result in [19].

Theorem 1.1. Let m be a positive integer with m ≥ 2 and 1 < q < 2m
m−1 . Set

Mq to be a positive integer satisfying

Mq >
m(m−1)n

2m− (m−1)q
.

Suppose that σ ∈ Lq((Rn)m)
⋂

C Mq((Rn)m) with

(2)
∥∥∂

α
σ
∥∥

L∞((Rn)m)
≤ D0, for |α| ≤ Mq.

Then the estimate∥∥Tσ ( f1, . . . , fm)
∥∥

L2/m(Rn)
≲ D

1− (m−1)q
2m

0

(
∥σ∥Lq((Rn)m)

) (m−1)q
2m

m

∏
j=1

∥ f j∥L2(Rn)

is valid for Schwartz functions f1, . . . , fm on Rn.

Remark 1. (i) The condition 1 < q < 2m
m−1 can be relaxed to 0 < q < 2m

m−1
as a multiplier σ ∈ Lq with q ∈ (0, 2m

m−1) is also in Lq with q ∈ (1, 2m
m−1) by

condition (2) with α = 0.
(ii) The number of derivatives Mq is sharp. One can verify this by modi-

fying the example in [19, Section 3].

Next we discuss multilinear rough singular integral operators. For a fixed
function Ω on the unit sphere Smn−1 and for y⃗′ := y⃗/|⃗y| ∈ Smn−1 we let

(3) K(⃗y) :=
Ω(⃗y′)
|⃗y|mn .

We then define the corresponding multilinear operator

LΩ

(
f1, . . . , fm

)
(x) := p.v.

∫
(Rn)m

K(⃗y)
m

∏
j=1

f j(x− y j) d y⃗, x ∈ Rn
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for Schwartz functions f1, . . . , fm on Rn.

Theorem 1.2. Suppose that 2m
m+1 < q ≤ ∞ and let Ω ∈ Lq(Smn−1) satisfying∫

Smn−1 Ωdσmn−1 = 0. Then there exists a constant C =Cn,m,q > 0 such that∥∥LΩ( f1, . . . , fm)
∥∥

L2/m(Rn)
≤C∥Ω∥Lq(Smn−1)

m

∏
j=1

∥ f j∥L2(Rn)

for Schwartz functions f1, . . . , fm on Rn.

The last result of this paper is about the boundedness of multilinear mul-
tiplier operators of Hörmander type. The multilinear multiplier operator
associated with a bounded function σ on (Rn)m is defined as in (8);

Tσ

(
f1, . . . , fm

)
(x) :=

∫
(Rn)m

σ (⃗ξ )
( m

∏
j=1

f̂ j(ξ j)
)

e2πi⟨x,∑m
j=1 ξ j⟩dξ⃗

for Schwartz functions f1, . . . , fm on Rn. We choose a Schwartz function
Φ(m) on (Rn)m having the properties that Φ̂(m) is positive and supported

in the annulus {⃗ξ ∈ (Rn)m : 1/2 ≤ |⃗ξ | ≤ 2}, and ∑γ∈Z Φ̂(m)(⃗ξ/2γ) = 1 for
ξ⃗ ̸= 0⃗. In the linear case m = 1, under the assumption

sup
j∈Z

∥∥σ(2 j·)Φ̂(1)
∥∥

Lq
s (Rn)

< ∞,

the condition
s > max

(
|n/2−n/p|,n/q

)
implies the boundedness of Tσ from Lp(Rn) to itself. Recently, the bilinear
analogue of this result was obtained in the series of papers [18, 21, 32] by
Grafakos, He, Honzı́k, Miyachi, Nguyen, and Tomita; all of these results
were inspired by the fundamental work of Tomita [34] in this direction.

Theorem 1.3. Let 1 < q < ∞ and

(4) s > max((m−1)n/2,mn/q).

Then there exists an absolute constant C =Cn,m,q,s > 0 such that

∥Tσ ( f1, . . . , fm)∥L2/m(Rn) ≤C sup
j∈Z

∥∥σ(2 j ·⃗ )Φ̂(m)
∥∥

Lq
s ((Rn)m)

m

∏
j=1

∥ f j∥L2(Rn)

for Schwartz functions f1, . . . , fm on Rn.

We remark that for 1 < q ≤ 2 this result has been obtained by [34] and
[22], so Theorem 1.3 is new only in the case q > 2; this corresponds to the
classical result of Calderón and Torchinsky [2] in the linear setting. The
sharpness of condition (4) was addressed in [18, Theorem 2].
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We design two novel ideas to deal with the above results: (I) An innova-
tive decomposition of an m-linear multiplier into sums of products so that
l-linear Plancherel type estimates (1 ≤ l ≤ m) can be used; see Proposi-
tion 2.4. (II) An effective way to split lattice points in (Zn)m into groups of
columns for the purposes of obtaining L2 ×·· ·×L2 → L2/m estimates; for
details see Section 3.

It is inevitable to introduce complicated notation in order to comprehen-
sively present the proofs in the general framework of m-linear operators; for
this reason we urge the readers to restrict attention to the case m = 3, which
already presents several new ingredients compared with the case m = 2 and
contains the main ideas.

Notation. C will denote inessential constants that may vary from occur-
rence to occurrence. A ≲ B means A ≤CB with C independent of A and B,
and write A ≈ B if both A ≲ B and B ≲ A hold. We denote the set of natural
numbers by N and of integers by Z; we also set N0 :=N∪{0}. Throughout
this paper, the index m ∈N will be the degree of multilinearity of operators.

2. PLANCHEREL TYPE ESTIMATES

Let ω be a compactly supported function defined on Rn which is smooth
up to order M1, where M1 ≥ n+1 is an integer. For λ ∈N0 let {ωλ

k }k∈Zn be
a sequence of compactly supported functions defined on Rn by the formula
ωλ

k (ξ ) = 2λn/2ω(2λ ξ − k).It is easy to see that ωλ
k is supported in the ball

B(2−λ k,C2−λ ) of radius C2−λ , centered at 2−λ k, for some fixed C. This
leads to the following properties:

(i) {ωλ
k }k∈Zn have almost disjoint supports.

(ii) ∑k∈Zn |ωλ
k (ξ )| ≤ 2λn/2 for all ξ ∈ Rn.

As a consequence of (i) and (ii) we obtain

(5)
(

∑
k∈Zn

∣∣ωλ
k (ξ )

∣∣q)1/q
≈q ∑

k∈Zn

∣∣ωλ
k (ξ )

∣∣≤ 2λn/2

for any 0 < q < ∞, due to the property of the supports. We define

(6) ω
λ

k⃗
(⃗ξ ) := ω

λ
k1
(ξ1) · · ·ωλ

km
(ξm)

where k⃗ := (k1, . . . ,km) ∈ (Zn)m and ξ⃗ = (ξ1, . . . ,ξm) ∈ (Rn)m. Let U be
a subset of (Zn)m and {bλ

k⃗
}⃗k∈U be a sequence of complex numbers. We

define

(7) σ
λ (⃗ξ ) := ∑

k⃗∈U
bλ

k⃗
ω

λ

k⃗
(⃗ξ )
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and the corresponding m-linear multiplier operator by

(8) T
σλ

(
f1, . . . , fm

)
(x) :=

∫
(Rn)m

σ
λ (⃗ξ )

( m

∏
j=1

f̂ j(ξ j)
)

e2πi⟨x,∑m
j=1 ξ j⟩dξ⃗

for x ∈Rn and Schwartz functions f1, . . . , fm on Rn. This operator coincides
with that in (1) when σλ = Ŵ .

The multiplier σλ defined in (7) appears naturally in the decomposition
of many operators and plays a key role in the understanding of their bound-
edness. Actually in the bilinear case, one has the estimate ([1, 19])

(9) ∥T
σλ ( f ,g)∥L1(Rn) ≤C∥{bλ

k⃗
}∥ℓ∞2λn|U|1/4∥ f∥L2(Rn)∥g∥L2(Rn).

The presence of ∥{bλ

k⃗
}∥ℓ∞ and |U |1/4 indicate the contribution of both the

height and the support of σλ . This phenomenon is dissimilar to the L2

boundedness of linear multipliers, where the support of the multiplier plays
no role. Motivated by many applications in which σλ is an important build-
ing block, in this work we obtain the m-linear version of (9).

Proposition 2.1. Let N be a positive integer and U be a subset of (Zn)m

with |U| ≤ N. For λ ≥ 0, let {bλ
k }⃗k∈(Zn)m be a sequence of complex numbers

satisfying ∥{bλ

k⃗
}⃗k∥ℓ∞ ≤ Aλ . Let σλ be defined as in (7). Then there exists a

constant C =Cn,m > 0 such that∥∥T
σλ

(
f1, . . . , fm

)∥∥
L2/m(Rn)

≤CAλ N
m−1
2m 2

λmn
2

m

∏
j=1

∥ f j∥L2(Rn)

for Schwartz functions f1, . . . , fm on Rn.

When m = 1, Proposition 2.1 follows from Plancherel’s identity and
yields a bound on the L2 norm of the corresponding linear operator Tσ that
depends only on the height of the multiplier σ . For m = 2, it coincides with
(9). Below we focus on the consequences of Proposition 2.1 while its proof
is postponed until the next section.

Remark 2. After completing this paper, we were informed that Kato, Miy-
achi, and Tomita [27] recently obtained a result that implies Proposition 2.1.
Their proof is independent of ours and builds on their previous work in [26].

The restriction |U| ≤ N in Proposition 2.1 can be interpreted in terms
of the compact support condition of σλ . Indeed, the support of σλ has
measure bounded by a constant times N2−λmn.

As we have seen in the proof of Proposition 2.1, the L2×·· ·×L2 → L2/m

boundedness of m-linear multiplier operator Tσ , m ≥ 2, may be affected by
the support of σ while the L2 boundedness depends only on ∥σ∥L∞ in the
linear setting.
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On the other hand, the following “support-independent” result could be
obtained from Proposition 2.1 under an extra ℓq condition which is satisfied
in many applications.

Proposition 2.2. Let m∈N and 0< q< 2m
m−1 . Fixing λ ∈N0, let {ωλ

k⃗
}⃗k∈(Zn)m

be wavelets of level λ . Suppose {bλ

k⃗
}⃗k∈(Zn)m is a sequence of complex num-

bers satisfying ∥{bλ

k⃗
}⃗k∈(Zn)m∥ℓ∞ ≤ Aλ and ∥{bλ

k⃗
}⃗k∈(Zn)m∥ℓq ≤ Bλ ,q. Then

the m-linear multiplier σλ , defined in (7) with U = (Zn)m, satisfies∥∥T
σλ ( f1, . . . , fm)

∥∥
L2/m ≲ A

1− (m−1)q
2m

λ
B

(m−1)q
2m

λ ,q 2λmn/2
m

∏
j=1

∥ f j∥L2

for Schwartz functions f1, . . . , fm on Rn.

Proof. When m = 1, it is clear from Plancherel’s identity. Therefore we
assume m ≥ 2.

For r ∈ N let

Uλ
r :=

{⃗
k ∈ (Zn)m : A2−r < |bλ

k⃗
| ≤ A2−r+1}.

As ∥{bλ

k⃗
}⃗k∈(Zn)m∥ℓ∞ ≤ Aλ , (Zn)m can be written as the disjoint union of Uλ

r ,

r ∈ N, and thus we may decompose σλ as

σ
λ = ∑

r∈N
σ

λ
r

where σλ
r := ∑⃗k∈Uλ

r
bλ

k⃗
ωλ

k⃗
. Observe that

(10) 2−rAλ |Uλ
r |1/q ≤

(
∑

k⃗∈Uλ
r

|bλ

k⃗
|q
)1/q

≤ Bλ ,q,

which implies

(11) |Uλ
r | ≤

( Bλ ,q

2−rAλ

)q
.

Applying Proposition 2.1 and (11) to each σλ
r , we obtain∥∥T

σλ
r
( f1, . . . , fm)

∥∥
L2/m ≲ |Uλ

r |(m−1)/2m2λmn/2(Aλ 2−r)
m

∏
j=1

∥ f j∥L2

≤ (Aλ 2−r)1− (m−1)q
2m B

q(m−1)
2m

λ ,q 2λmn/2
m

∏
j=1

∥ f j∥L2 .

Taking ℓ2/m-norm over r ∈ N, we have∥∥T
σλ ( f1, . . . , fm)

∥∥
L2/m ≤

(
∑
r∈N

∥∥T
σλ

r
( f1, . . . , fm)

∥∥2/m
L2/m

)m/2
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≲ A
1− (m−1)q

2m
λ

B
(m−1)q

2m
λ ,q 2λmn/2∥ f1∥L2 · · ·∥ fm∥L2,

since 1− (m−1)q
2m > 0 and 2/m ≤ 1. □

For the case m ≥ 2 and q ≥ 2m
m−1 , we have the following substitute result

under the extra condition that all k⃗ belong to a ball of radius C2λ , centered at
the origin, which means that σλ is contained in a ball of radius comparable
to 1.

Proposition 2.3. Let m be a positive integer with m ≥ 2 and 2m
m−1 ≤ q < ∞.

For each λ ∈ N0 let {ωλ

k⃗
} be wavelets of level λ . Let Uλ := {⃗k ∈ (Zn)m :

|⃗k| ≤C2λ} for some C > 0. Suppose {bλ

k⃗
}⃗k∈(Zn)m is a sequence of complex

numbers with ∥{bλ

k⃗
}⃗k∈(Zn)m∥ℓq ≤ Bλ ,q. Then the m-linear multiplier σλ ,

defined in (7) with U = Uλ , satisfies∥∥T
σλ ( f1, . . . , fm)

∥∥
L2/m ≲ Bλ ,qDλ ,q,m

( m

∏
j=1

∥ f j∥L2

)
for Schwartz functions f1, . . . , fm on Rn, where

(12) Dλ ,q,m :=

{
λ m/22λmn/2, q = 2m

m−1

2λn( 2m−1
2 −m

q ), q > 2m
m−1 .

Proof. Pick rmax ∈ N satisfying λmn
q ≤ rmax <

λmn
q +1. Define

Uλ
rmax

:= {⃗k ∈ Uλ : |bλ

k⃗
| ≤ 2−rmax+1Bλ ,q}

and for 1 ≤ r < rmax

Uλ
r := {⃗k ∈ Uλ : 2−rBλ ,q < |bλ

k⃗
| ≤ 2−r+1Bλ ,q}.

Since |bλ

k⃗
| ≤ Bλ ,q for all k⃗ ∈ (Zn)m, we can write

σ
λ =

rmax

∑
r=1

σ
λ
r

where σλ
r := ∑⃗k∈Uλ

r
bλ

k⃗
ωλ

k⃗
. Using the same argument in (10), we see that

(13) |Uλ
r | ≤ 2rq, 1 ≤ r < rmax

and

(14) |Uλ
rmax

| ≤ |Uλ |≲ 2λmn ≤ 2rmaxq.
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Applying Proposition 2.1, (13), and (14) to each σλ
r , we obtain∥∥T

σλ
r
( f1, . . . , fm)

∥∥
L2/m ≲ |Uλ

r |(m−1)/2m2λmn/2∥{bλ

k⃗
}⃗k∈Uλ

r
∥ℓ∞

m

∏
j=1

∥ f j∥L2

≲ 2rq(m−1)/2m2λmn/22−rBλ ,q

m

∏
j=1

∥ f j∥L2

= Bλ ,q2λmn/22r( q(m−1)
2m −1)

m

∏
j=1

∥ f j∥L2.

Taking the ℓ2/m quasi-norm over 1 ≤ r ≤ rmax, we have

∥T
σλ ( f1, . . . , fm)∥L2/m ≤

( rmax

∑
r=1

∥∥T
σλ

r
( f1, . . . , fm)

∥∥2/m
L2/m

)m/2

≲ Bλ ,q2λmn/2
( rmax

∑
r=1

2r( q(m−1)
2m −1) 2

m

)m/2 m

∏
j=1

∥ f j∥L2.

We note that( rmax

∑
r=1

2r( q(m−1)
2m −1) 2

m

)m/2
≈

{
rm/2

max , q = 2m
m−1

2rmax(
q(m−1)

2m −1), q > 2m
m−1

≲

{
λ m/2, q = 2m

m−1

2λn(m−1
2 −m

q ), q > 2m
m−1 ,

which completes the proof. □

In the study of bilinear rough singular integrals and bilinear Hörmander
multipliers, an argument splitting the problem to diagonal and off-diagonal
cases is utilized. The off-diagonal case uses Plancherel’s theorem and a
pointwise control. In the diagonal case, we employ the bilinear result of
Plancherel type, which is actually the driving force of this work. We now
present a multilinear version generalizing and combining these two parts,
which shows that all l-linear Plancherel type result, 1 ≤ l ≤ m, is necessary
in the study of many m-linear multipliers.

For µ ∈ N0 let Vµ be a subset of {⃗k ∈ (Zn)m : 2µ−c0 ≤ |⃗k| ≤ 2µ+c0} for
some c0 ≥ 1. Let M be a positive constant and for each 1 ≤ l ≤ m let

Vµ

l :=
{⃗

k ∈ Vµ : |k1|, . . . , |kl| ≥ M > |kl+1|, . . . , |km|
}
.

We also define Lλ
k f :=

(
ωλ

k f̂
)∨ and Lλ ,γ

k f :=
(
ωλ

k (·/2γ) f̂
)∨ for k ∈ Zn.

Proposition 2.4. Let m be a positive integer with m ≥ 2 and 0 < q <
∞. For each λ ∈ N0, let {ωλ

k⃗
}⃗k be wavelets of level λ . Suppose that
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{bλ ,γ,µ

k⃗
}

γ,µ∈Z,⃗k∈(Zn)m is a sequence of complex numbers satisfying

sup
γ∈Z

∥∥{bλ ,γ,µ

k⃗
}⃗k∈(Zn)m

∥∥
ℓ∞ ≤ Aλ ,µ

and
sup
γ∈Z

∥∥{bλ ,γ,µ

k⃗
}⃗k∈(Zn)m

∥∥
ℓq ≤ Bλ ,µ,q.

Then the following statements hold:
(1) For 1 ≤ r ≤ 2 there exists a constant C > 0, independent of λ ,µ ,

such that∥∥∥( ∑
γ∈Z

∣∣∣ ∑
k⃗∈Vλ+µ

1

bλ ,γ,µ

k⃗
Lλ ,γ

k1
f λ ,γ,µ
1

m

∏
j=2

Lλ ,γ
k j

f j

∣∣∣r)1/r∥∥∥
L2/m

≤CAλ ,µ2λmn/2
(

∑
γ∈Z

∥ f λ ,γ,µ
1 ∥r

L2

)1/r m

∏
i=2

∥ fi∥L2

for Schwartz functions f2, . . . , fm on Rn and a sequence of Schwartz
functions { f λ ,γ,µ

1 }λ ,γ,µ on Rn.
(2) For 2 ≤ l ≤ m and 0 < q < 2l

l−1 , there exists a constant C > 0, inde-
pendent of λ ,µ , such that∥∥∥ ∑

γ∈Z

∣∣∣ ∑
k⃗∈Vλ+µ

l

bλ ,γ,µ

k⃗

( l

∏
j=1

Lλ ,γ
k j

f λ ,γ,µ
j

)( m

∏
j=l+1

Lλ ,γ
k j

f j

)∣∣∣∥∥∥
L2/m

≤CA
1− (l−1)q

2l
λ ,µ B

(l−1)q
2l

λ ,µ,q 2λmn/2
[ l

∏
j=1

(
∑
γ∈Z

∥ f λ ,γ,µ
j ∥2

L2

)1/2][ m

∏
j=l+1

∥ f j∥L2

]
for Schwartz functions fl+1, . . . , fm on Rn and sequences of Schwartz
functions { f λ ,γ,µ

j }λ ,γ,µ , j = 1, . . . , l, where ∏
m
m+1 is understood as

empty.
(3) For 2 ≤ l ≤ m and 2l

l−1 ≤ q < ∞ , there exists a constant C > 0,
independent of λ , such that∥∥∥ ∑

γ∈Z

∣∣∣ ∑
k⃗∈Vλ

l

bλ ,γ

k⃗

( l

∏
j=1

Lλ ,γ
k j

f λ ,γ
j

)( m

∏
j=l+1

Lλ ,γ
k j

f j

)∣∣∣∥∥∥
L2/m

≤CBλ ,qDλ ,q,l2
λ (m−l)n/2

[ l

∏
j=1

(
∑
γ∈Z

∥ f λ ,γ
j ∥2

L2

)1/2][ m

∏
j=l+1

∥ f j∥L2

]
for Schwartz functions fl+1, . . . , fm on Rn and sequences of Schwartz
functions { f λ ,γ

j }λ ,γ , j = 1, . . . , l, where bλ ,γ

k⃗
:= bλ ,γ,0

k⃗
, Bλ ,q :=Bλ ,0,q,

and Dλ ,q,l is defined as in (12).
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The proof of Proposition 2.4 is given in the next section following that of
Proposition 2.1.

3. PROOFS OF PROPOSITION 2.1 AND PROPOSITION 2.4

When m = 1, Proposition 2.1 follows immediately from Plancherel’s
identity. Thus, we will be concerned only with the case m ≥ 2. For the
bilinear case m = 2, a concept called column is used; see, for instance,
[1, 19]. Let U be any subset of Zn ×Zn. For any (k1,k2) ∈ U , a column
ColUk1

is defined as the subset of Zn consisting of k for which (k1,k) ∈ U .
Similarly, ColUk2

means the set of k ∈ Zn satisfying (k,k2) ∈ U . We general-
ize the concept of columns to the multilinear case. For a fixed k⃗ ∈ (Zn)m,
1 ≤ l ≤ m, and 1 ≤ j1 ≤ ·· · ≤ jl ≤ m let

k⃗
j1,..., jl := (k j1 , . . . ,k jl)

denote the vector in (Zn)l consisting of j1, . . . , jl components of k⃗ and
k⃗
∗ j1, j2,..., jl stand for the vector in (Zn)m−l , consisting of k⃗ excepting j1, . . . ,

jl components (e.g. k⃗
∗1,..., j

= k⃗
j+1,...,m

= (k j+1, . . . ,km) ∈ (Zn)m− j). For
any sets U in (Zn)m, 1 ≤ j ≤ m, and 1 ≤ j1 ≤ ·· · ≤ jl ≤ m let

P jU :=
{

k j ∈ Zn : k⃗ ∈ U for some k⃗
∗ j ∈ (Zn)m−1}

P∗ j1,..., jlU :=
{⃗

k
∗ j1,..., jl ∈ (Zn)m−l : k⃗ ∈ U for some k j1, . . . ,k jl ∈ Zn}

be the projections of U onto the k j-column and k⃗
∗ j1,..., jl -plane, respectively.

For a fixed k⃗
∗ j1,..., jl ∈ P∗ j1,..., jlU , we define

ColU
k⃗
∗ j1,..., jl := {⃗k

j1,..., jl ∈ (Zn)l : k⃗ = (k1, . . . ,km) ∈ U}.

Then we observe that

(15) ∑
k⃗∈U

· · ·= ∑
k⃗
∗ j1,..., jl∈P∗ j1,..., jlU

(
∑

k⃗
j1,..., jl∈ColU

k⃗∗ j1,..., jl

· · ·
)
.

Furthermore, for each k⃗
∗ j1,..., jl−1 we have

ColU
k⃗
∗ j1,..., jl =

⋃
k jl∈P jlColU

k⃗∗ j1,..., jl

ColU
k⃗
∗ j1,..., jl−1 ×{k jl}

and this allows us to wrtie

(16) ∑
k⃗∈U

· · ·= ∑
k⃗
∗ j1,..., jl∈P∗ j1,..., jlU

(
∑

k jl∈P jlColU
k⃗∗ j1,..., jl

(
∑

k⃗
j1,..., jl−1∈ColU

k⃗∗ j1,..., jl−1

· · ·
))

.
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To eliminate possible ambiguities, we clarify that ColU
k⃗
∗ j1,..., jl

consists of

points in (Zn)l denoted by (k j1,k j2, . . . ,k jl), and P jl(k j1,k j2 , . . . ,k jl) = k jl ;
here P jl is used slightly differently than previously defined.

To make it easier to understand, let us think about the case n = 1 and
m = 3. P1U is the projection of U to the first coordinate. P∗1U is the
projection of U to the (k2,k3)-plane. ColU

k⃗
∗1 is an 1-column in Z3 ∩U with

(k2,k3) = k⃗
∗1

fixed. When jl = 1, identity (15) says that

∑
k⃗∈U

· · ·= ∑
(k2,k3)∈P∗1U

(
∑

k1∈ColUk2,k3

· · ·
)
.

When ( j1, . . . , jl) = (1,2), identity (16) says that

∑
k⃗∈U

· · ·= ∑
k3∈P3U

(
∑

k2∈P2ColUk3

(
∑

k1∈ColUk2,k3

· · ·
))

.

The proof of Proposition 2.1 is based on the decompositions in (15) and
(16) and on the following lemma.

Lemma 3.1. Let m ≥ 2 and U be a subset of (Zn)m. Let λ ∈ N0 and
{ωλ

k⃗
}⃗k∈(Zn)m be wavelets whose level is λ . Let σλ = ∑⃗k∈U bλ

k⃗
ωλ

k⃗
, where

{bλ

k⃗
}⃗k∈U is a sequence of complex numbers satisfying ∥{bλ

k⃗
}⃗k∈(Zn)m∥ℓ∞ ≤

Aλ . Then there exists a constant C > 0 such that∥∥T
σλ ( f1, · · · , fm)

∥∥
L2/m ≤CAλ 2λ (m−1)n/2

(
∏

i̸= j,1≤i≤m
∥ fi∥L2

)
×
(∫

Rn

∣∣ f̂ j(ξ )
∣∣2 ∑

k⃗∈U

∣∣ωλ
k j
(ξ )

∣∣2dξ

)1/2

for each 1 ≤ j ≤ m.

Remark 3. We should remark that ∑⃗k∈U
∣∣ωλ

k j
(ξ )

∣∣2 could be very large since
for each fixed k j there may exist many k ∈ U such that P j(k) = k j. This is
how the support of U effects the norm of the multilinear operator T

σλ . A
more exact estimate of this quantity relies on the structure of U . See (20)
and (21) below for some related calculations.

Proof. Without loss of generality, we may assume j = 1. In view of (15),
σλ can be written as

σ
λ (⃗ξ ) = ∑

k⃗
∗1∈P∗1U

ω
λ
k2
(ξ2) · · ·ωλ

km
(ξm) ∑

k1∈ColU
k⃗∗1

bλ

k⃗
ω

λ
k1
(ξ1),
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and this yields that

T
σλ

(
f1, . . . , fm

)
(x) = ∑

k⃗
∗1∈P∗1U

( m

∏
i=2

Lλ
ki

fi(x)
)

∑
k1∈ColU

k⃗∗1

bλ

k⃗
Lλ

k1
f1(x),

where Lλ
k f := (ωλ

k f̂ )∨ for k ∈ Zn. Using the Cauchy-Schwarz inequality
and Hölder’s inequality, we obtain that∥∥T

σλ ( f1, . . . , fm)
∥∥

L2/m ≤
∥∥∥( ∑

k⃗
∗1∈(Zn)m−1

∣∣∣ m

∏
i=2

Lλ
ki

fi

∣∣∣2)1/2∥∥∥
L2/(m−1)

×
∥∥∥( ∑

k⃗
∗1∈P∗1U

∣∣∣ ∑
k1∈ColU

k⃗∗1

bλ

k⃗
Lλ

k1
f1

∣∣∣2)1/2∥∥∥
L2

=: I × II.

As a direct consequence of Plancherel’s identity and (5), we have∥∥{Lλ
k f

}
k∈Zn

∥∥
L2(ℓ2)

≲ 2λn/2∥ f∥L2

and thus,

I =
∥∥∥ m

∏
i=2

(
∑

ki∈Zn
|Lλ

ki
fi|2

)1/2∥∥∥
L2/(m−1)

≤
m

∏
i=2

∥∥{Lλ
ki

fi
}

ki∈Zn

∥∥
L2(ℓ2)

≲ 2λ (m−1)n/2
m

∏
i=2

∥ fi∥L2,

where the first inequality is obtained by Hölder’s inequality. Moreover, it
follows from Plancherel’s identity and the disjoint compact support prop-
erty of {ωλ

k1
}k1∈Zn that

II ≲
(

∑
k⃗
∗1∈P∗1U

∥∥∥ f̂1 ∑
k1∈ColU

k⃗∗1

bλ

k⃗
ω

λ
k1

∥∥∥2

L2

)1/2

≈
(∫

Rn
| f̂1(ξ )|2 ∑

k⃗
∗1∈P∗1U

∑
k1∈ColU

k⃗∗1

|bλ

k⃗
|2|ωλ

k1
(ξ )|2dξ

)1/2

and this is controlled by a constant multiple of

Aλ

(∫
Rn

| f̂1(ξ )|2 ∑
k⃗∈U

|ωλ
k1
(ξ )|2dξ

)1/2

where (15) is applied. This completes the proof. □
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3.1. Proof of Proposition 2.1. Let N1, . . . ,Nm−1 be positive numbers less
than N, which will be chosen later. We separate U into m disjoint subsets

U1 := {⃗k ∈ U : |ColU
k⃗
∗1|> N1}

U2 := {⃗k ∈ U \U1 : |ColU
k⃗
∗1,2|> N2}

...

Um−1 := {⃗k ∈ U \ (U1 ∪·· ·∪Um−2) : |ColU
k⃗
∗1,...,m−1|> Nm−1}

Um := U \ (U1 ∪·· ·∪Um−1)

and write

σ
λ =

m

∑
j=1

∑
k⃗∈U j

bλ

k⃗
ω

λ

k⃗
=:

m

∑
j=1

σ
λ

( j).

Observe that for 1 ≤ j ≤ m−1, due to (15),

N ≥ |U j|> N j|P∗1,..., jU j|,

which implies

(17) |P∗1,..., jU j|< NN−1
j .

Moreover, for 2 ≤ j ≤ m and k⃗
∗1,..., j−1 ∈ P∗1,..., j−1U j

(18) |ColU
j

k⃗
∗1,..., j−1| ≤ N j−1.

This is because if k⃗
∗1,..., j−1

= (k j, . . . ,km) ∈ P∗1,..., j−1U j, then there ex-
ists (l1, . . . , l j−1) ∈ (Zn) j−1 such that (l1, . . . , l j−1,k j, . . . ,km) ∈ U j and thus
(l1, . . . , l j−1,k j, . . . ,km) ̸∈ U1 ∪·· ·∪U j−1, which finally implies (18).

We now apply Lemma 3.1 to each σ( j), 1 ≤ j ≤ m, to obtain∥∥T
σλ

( j)
( f1, · · · , fm)

∥∥
L2/m ≤CAλ 2λ (m−1)n/2

∏
i ̸= j,1≤i≤m

∥ fi∥L2(19)

×
(∫

Rn
| f̂ j(ξ )|2 ∑

k⃗∈U j

|ωλ
k j
(ξ )|2dξ

)1/2
.

Note that
(20)

∑
k⃗∈U1

|ωλ
k1
(ξ )|2 = ∑

k⃗
∗1∈P∗1U1

(
∑

k1∈ColU1

k⃗∗1

|ωλ
k1
(ξ )|2

)
≤ 2λn|P∗1U1|< 2λnNN−1

1
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where (15), (5), and (17) are applied. Similarly, when 2 ≤ j ≤ m− 1, we
have

∑
k⃗∈U j

|ωλ
k j
(ξ )|2 = ∑

k⃗
∗1,..., j∈P∗1,..., jU j

(
∑

k j∈P jColU j

k⃗∗1,..., j

|ωλ
k j
(ξ )|2|ColU

j

k⃗
∗1,..., j−1|

)
≤ 2λnN j−1|P∗1,..., jU j| ≤ 2λnNN j−1N−1

j ,(21)

using (16), (5), (18), and (17). For the last case j = m, it follows from (15),
(5), and (18) that

∑
k⃗∈Um

|ωλ
km
(ξ )|2 = ∑

km∈PmUm
|ωλ

km
(ξ )|2|ColU

m

km
| ≤ 2λnNm−1.

Now we choose N1, . . . ,Nm−1 satisfying the identity

(22) NN−1
1 = NN1N−1

2 = NN2N−1
3 = · · ·= NNm−2N−1

m−1 = Nm−1.

Solving (22), we have

N j = N j/m, 1 ≤ j ≤ m−1

and this establishes

∑
k⃗∈U j

|ωλ
k j
(ξ )|2 ≤ 2λnN(m−1)/m, 1 ≤ j ≤ m,

which further implies(∫
Rn

| f̂ j(ξ )|2 ∑
k⃗∈U j

|ωλ
k j
(ξ )|2dξ

)1/2
≤ 2λn/2N(m−1)/2m∥ f j∥L2.

Then this, together with (19), proves∥∥T
σλ

( j)
( f1, . . . , fm)

∥∥
L2/m ≲ Aλ N(m−1)/2m2λmn/2

m

∏
i=1

∥ fi∥L2,

as desired.

3.2. Proof of Proposition 2.4. Let us recall some important notations first.

Vµ

l :=
{⃗

k ∈ Vµ : |k1|, . . . , |kl| ≥ M > |kl+1|, . . . , |km|
}
,

where M is positive, and Lλ
k f :=

(
ωλ

k f̂
)∨.

We observe that

(23)
∣∣P∗1,...,lV

µ

l

∣∣≤ Mn(m−l) for µ ≥ 0,

Lλ ,γ
k f (x) = Lλ

k
(

f (·/2γ)
)
(2γx),

and
|Lλ ,γ

k f (x)|≲ 2λn/2M f (x) for k ∈ Zn.
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Here M is the Hardy-Littlewood maximal operator, defined by M f (x) :=
supQ∋x |Q|−1 ∫

Q | f (y)|dy, where the supremum is taken over all cubes con-
taining x. This last inequality is possible as we can assume that ω is smooth
enough. Then in view of (15) we can write∣∣∣ ∑

k⃗∈Vλ+µ

l

bλ ,γ,µ

k⃗

( l

∏
j=1

Lλ ,γ
k j

f λ ,γ,µ
j (x)

)( m

∏
j=l+1

Lλ ,γ
k j

f j(x)
)∣∣∣

≲ 2λ (m−l)n/2
[ m

∏
j=l+1

M f j(x)
](24)

× ∑
k⃗
∗1,...,l∈P∗1,...,lV

λ+µ

l

∣∣∣ ∑

k⃗
1,...,l∈Col

Vλ+µ

l
k⃗∗1,...,l

bλ ,γ,µ

k⃗

( l

∏
j=1

Lλ
k j

(
f λ ,γ,µ

j (·/2γ)
)
(2γx)

)∣∣∣.
When l = 1, using (24), Hölder’s inequality, (Minkowski inequality for

r < 2 ), and the L2 boundedness of M, we obtain∥∥∥( ∑
γ∈Z

∣∣∣ ∑
k⃗∈Vλ+µ

1

bλ ,γ,µ

k⃗
Lλ ,γ

k1
f λ ,γ,µ
1

( m

∏
j=2

Lλ ,γ
k j

f j

)∣∣∣r)1/r∥∥∥
L2/m

≲ 2λ (m−1)n/2
( m

∏
j=2

∥∥ f j
∥∥

L2

)
× ∑

k⃗
∗1∈P∗1V

λ+µ

1

(
∑
γ∈Z

∥∥∥ ∑

k1∈Col
Vλ+µ

1
k⃗∗1

bλ ,γ,µ

k⃗
Lλ

k1

(
f λ ,γ,µ
1 (·/2γ)

)
(2γ ·)

∥∥∥r

L2

)1/r
.

A change of variables and Plancherel’s identity yield that∥∥∥ ∑

k1∈Col
Vλ+µ

1
k⃗∗1

bλ ,γ,µ

k⃗
Lλ

k1

(
f λ ,γ,µ
1 (·/2γ)

)
(2γ ·)

∥∥∥
L2

≤ Aλ ,µ2λn/2∥ f λ ,γ,µ
1 ∥L2,

which combined with (23) proves the first estimate.
Similarly, for 0 < q < 2m

m−1 and 2 ≤ l ≤ m, we can see∥∥∥ ∑
γ∈Z

∣∣∣ ∑
k⃗∈Vλ+µ

l

bλ ,γ,µ

k⃗

( l

∏
j=1

Lλ ,γ
k j

f λ ,γ,µ
j

)( m

∏
j=l+1

Lλ ,γ
k j

f j

)∣∣∣∥∥∥
L2/m

≲ 2λ (m−l)n/2
( m

∏
j=l+1

∥ f j∥L2

)
×
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∑
k⃗
∗1,...,l∈P∗1,...,lV

λ+µ

l

∥∥∥ ∑
γ∈Z

∣∣∣ ∑

k⃗
1,...,l∈Col

Vλ+µ

l
k⃗∗1,...,l

bλ ,γ,µ

k⃗

[ l

∏
j=1

Lλ
ki

(
f λ ,γ,µ

j (·/2γ)
)
(2γ ·)

]∣∣∣∥∥∥
L2/l

.

The L2/l norm is clearly dominated by(
∑
γ∈Z

∥∥∥ ∑

k⃗
1,...,l∈Col

Vλ+µ

l
k⃗∗1,...,l

bλ ,γ,µ

k⃗

( l

∏
j=1

Lλ
k j

(
f λ ,γ,µ

j (·/2γ)
)
(2γ ·)

)∥∥∥2/l

L2/l

)l/2

since 2/l ≤ 1, and now we apply a change of variables, Proposition 2.2, and
Hölder’s inequality to obtain that the above expression is less than

A
1− (l−1)q

2l
λ ,µ B

(l−1)q
2l

λ ,µ,q 2λ ln/2
(

∑
γ∈Z

2−γn
( l

∏
j=1

∥∥ f λ ,γ,µ
j (·/2γ)

∥∥2/l
L2

))l/2

≤ A
1− (l−1)q

2l
λ ,µ B

(l−1)q
2l

λ ,µ,q 2λ ln/2
l

∏
j=1

(
∑
γ∈Z

∥ f λ ,γ,µ
j ∥2

L2

)1/2
.

This completes the proof of the second statement.
The proof of the third one is essentially the same as the above argument

except that we apply Proposition 2.3 instead of Proposition 2.2 in the last
step.

4. COMPACTLY SUPPORTED WAVELETS

Typical functions possessing properties (i) and (ii) in Section 2 are the
compactly supported wavelets constructed by Daubechies [8]; their con-
struction is contained in the books of Meyer [30] and Daubechies [9].
Wavelets have been used to study singular integrals in different settings; see
for instance [31], [15], [12], and [17]. For the purposes of this paper, we
need smooth wavelets with compact supports but also of product type, like
(6). The construction of such orthonormal bases is carefully presented in
Triebel [36], but for the reader’s sake we provide an outline. For any fixed
M ∈ N there exist real compactly supported functions ψF ,ψM in C M(R)
satisfying the following properties:

(a) ∥ψF∥L2(R) = ∥ψM∥L2(R) = 1
(b)

∫
R xαψM(x)dx = 0 for all 0 ≤ α ≤ M

(c) If ΨG⃗ is a function on Rmn, defined by

ΨG⃗(⃗x) := ψg1(x1) · · ·ψgmn(xmn)

for x⃗ := (x1, . . . ,xmn) ∈ Rmn and G⃗ := (g1, . . . ,gmn) in the set

I :=
{

G⃗ := (g1, . . . ,gmn) : gi ∈ {F,M}
}
,
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then the family of functions⋃
λ∈N0

⋃
k⃗∈Zmn

{
2λmn/2

ΨG⃗(2
λ x⃗− k⃗) : G⃗ ∈ Iλ

}
forms an orthonormal basis of L2(Rmn), where I0 := I and Iλ :=
I \{(F, . . . ,F)} for λ ≥ 1.

Fix 1 < q < ∞ and s ≥ 0. Let ∥F∥Lq
s (Rmn) denote the Sobolev space norm

defined as the Lq((Rn)m) norm of (⃗I − ∆⃗)s/2F , where ∆⃗ is the Laplacian of
a function F on (Rn)m. It is also shown in [35] that if M is sufficiently large
and F is a tempered distribution on Rmn lying in Lq

s (Rmn), then F can be
represented as

(25) F (⃗x) = ∑
λ∈N0

∑
G⃗∈Iλ

∑
k⃗∈Zmn

bλ

G⃗,⃗k
2λmn/2

ΨG⃗(2
λ x⃗− k⃗)

and ∥∥∥( ∑
G⃗, k⃗

∣∣bλ

G⃗,⃗k
Ψ

λ

G⃗,⃗k

∣∣2)1/2∥∥∥
Lq(Rmn)

≤C2−sλ∥F∥Lq
s (Rmn),

where Ψλ

G⃗,⃗k
(⃗x) = 2λmn/2ΨG⃗(2

λ x⃗− k⃗), and

bλ

G⃗,⃗k
:=

∫
Rmn

F (⃗x)Ψλ

G⃗,⃗k
(⃗x)d⃗x.

Moreover, it follows from the last estimate and the disjoint support property
of the Ψλ

G⃗,⃗k
’s that∥∥{bλ

G⃗,⃗k

}⃗
k∈Zmn

∥∥
ℓq ≈

(
2λmn(1−q/2)

∫
Rmn

(
∑
k⃗

∣∣bλ

G⃗,⃗k
Ψ

λ

G⃗,⃗k
(⃗x)

∣∣2)q/2
d⃗x
)1/q

≲ 2−λ (s−mn/q+mn/2)∥F∥Lq
s (Rmn).(26)

We will write G⃗ := (G1, . . . ,Gm) ∈ ({F,M}n)m and

ΨG⃗(⃗ξ ) = ΨG1(ξ1) · · ·ΨGm(ξm).

For each k⃗ := (k1, . . . ,km) ∈ (Zn)m and λ ∈ N0, let

Ψ
λ
Gi,ki

(ξi) := 2λn/2
ΨGi(2

λ
ξi − ki), 1 ≤ i ≤ m

and
Ψ

λ

G⃗,⃗k
(⃗ξ ) := Ψ

λ
G1,k1

(ξ1) · · ·Ψλ
Gm,km

(ξm).

We also assume that the support of ψgi is contained in {ξ ∈ R : |ξ | ≤ C0}
for some C0 > 1, which implies that

(27) Supp(Ψλ
Gi,ki

)⊂
{

ξi ∈ Rn : |2λ
ξi − ki| ≤C0

√
n
}
.
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In other words, the support of Ψλ
Gi,ki

is contained in the ball centered at
2−λ ki and radius C0

√
n2−λ .

5. PROOF OF THEOREM 1.1

Using (25) with s = 0, we decompose σ as

σ (⃗ξ )= ∑
λ∈N0

∑
G⃗∈Iλ

∑
k⃗∈(Zn)m

bλ

G⃗,⃗k
Ψ

λ
G1,k1

(ξ1) · · ·Ψλ
Gm,km

(ξm)=: ∑
λ∈N0

∑
G⃗∈Iλ

σ
λ

G⃗
(⃗ξ )

where bλ

G⃗,⃗k
:=

∫
(Rn)m σ (⃗ξ )Ψλ

G⃗,⃗k
(⃗ξ )dξ⃗ . As an immediate consequence of

Proposition 2.2, we have∥∥T
σλ

G⃗
( f1, . . . , fm)

∥∥
L2/m ≲

∥∥{bλ

G⃗,⃗k
}⃗k

∥∥1− (m−1)q
2m

ℓ∞

∥∥{bλ

G⃗,⃗k
}⃗k

∥∥ (m−1)q
2m

ℓq 2λmn/2
m

∏
j=1

∥ f j∥L2.

We first observe that (26) yields that∥∥{bλ

G⃗,⃗k
}⃗k

∥∥
ℓq ≲ 2λmn(1/q−1/2)∥σ∥Lq((Rn)m).

In addition, as σ ∈ C Mq((Rn)m), using this property, the Mq vanishing mo-
ment condition of Ψλ

G⃗,⃗k
in conjunction with Taylor’s formula, an argument

similar to [19, Lemma 2.1] and [17, Lemma 7] yields∥∥{bλ

G⃗,⃗k
}⃗k

∥∥
ℓ∞ ≲ 2−λ (Mq+mn/2)D0.

Here we choose the number of vanishing moment as Mq so that we can ob-
tain sufficient decay, which will be useful in summing over λ later. There-
fore, we finally arrive at the estimate∥∥T

σλ

G⃗
( f1, . . . , fm)

∥∥
L2/m

≲ 2−λ

(
Mq(1− (m−1)q

2m )− n(m−1)
2

)
D

1− (m−1)q
2m

0 ∥σ∥
(m−1)q

2m
Lq((Rn)m)

m

∏
j=1

∥ f j∥L2,

which in turn implies that∥∥Tσ ( f1, . . . , fm)
∥∥

L2/m

≤
(

∑
λ∈N0

∑
G⃗∈Iλ

∥∥T
σλ

G⃗
( f1, . . . , fm)

∥∥2/m
L2/m

)m/2

≲ D
1− (m−1)q

2m
0 ∥σ∥

(m−1)q
2m

Lq((Rn)m)

(
∑

λ∈N0

2−λ (Mq(1− (m−1)q
2m )− n(m−1)

2 ) 2
m

)m/2 m

∏
j=1

∥ f j∥L2.

Since Mq >
m(m−1)n

2m−(m−1)q , the sum over λ converges and completes the proof.
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6. PROOF OF THEOREM 1.2

Without loss of generality, we may assume 2m
m+1 < q < 2 as Lr(Smn−1)⊂

Lq(Smn−1) for r ≥ q. We first utilize a dyadic decomposition introduced by
Duoandikoetxea and Rubio de Francia [14]. Recall that Φ(m) is a Schwartz
function such that Φ̂(m) is supported in the annulus {⃗ξ ∈ (Rn)m : 1/2 ≤

|⃗ξ | ≤ 2} and ∑ j∈Z Φ̂
(m)
j (⃗ξ ) = 1 for ξ⃗ ̸= 0⃗ where Φ̂

(m)
j (⃗ξ ) := Φ̂(m)(⃗ξ/2 j).

For γ ∈ Z let

Kγ (⃗y) := Φ̂(m)(2γ y⃗)K(⃗y), y⃗ ∈ (Rn)m

and then we observe that Kγ (⃗y) = 2γmnK0(2γ y⃗). For µ ∈ Z we define

Kγ

µ(y) := Φ
(m)
µ+γ ∗Kγ(y) = 2γmn[Φ

(m)
µ ∗K0](2γy).

It follows from this definition that

K̂γ

µ (⃗ξ ) = Φ̂(m)(2−(µ+γ)
ξ⃗ )K̂0(2−γ

ξ⃗ ) = K̂0
µ(2−γ

ξ⃗ ),

which implies that K̂γ

µ is bounded uniformly in γ while they have almost
disjoint supports, so it is natural to add them together as follows,

Kµ (⃗y) := ∑
γ∈Z

Kγ

µ (⃗y).

We define

Lµ

(
f1, . . . , fm

)
(x) :=

∫
(Rn)m

Kµ (⃗y)
m

∏
j=1

f j(x− y j) d⃗y, x ∈ Rn

and write∥∥LΩ( f1, . . . , fm)
∥∥

L2/m ≲
∥∥∥ ∑

µ∈Z:2µ−10≤C0
√

mn

Lµ( f1, . . . , fm)
∥∥∥

L2/m

+
∥∥∥ ∑

µ∈Z:2µ−10>C0
√

mn

Lµ( f1, . . . , fm)
∥∥∥

L2/m
(28)

where C0 is the constant that appeared in (27).
The analysis of LΩ will be reduced to analyzing Lµ from the frequency

side. More precisely, we will need the well-known result

(29) |∂ α K̂0(⃗ξ )| ≤Cα∥Ω∥Lq

{
min(|⃗ξ |, |⃗ξ |−δ ) α = 0
min(1, |⃗ξ |−δ ) α ̸= 0.
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See [13, Lemma 8.20] for detailed calculations. With these estimates in
hand, using the Cofiman-Meyer theorem [4] and the argument in [17, Propo-
sition 3], we can prove that
(30)∥∥Lµ( f1, . . . , fm)

∥∥
Lp ≲ ∥Ω∥Lq(Smn−1)

( m

∏
j=1

∥ f j∥Lp j

){2(mn−δ )µ , µ ≥ 0
2(1−δ )µ , µ < 0

for 0 < δ < 1/q′. This implies that∥∥∥ ∑
µ∈Z:2µ−10≤C0

√
mn

Lµ( f1, . . . , fm)
∥∥∥

L2/m
≲ ∥Ω∥Lq(Smn−1)

m

∏
j=1

∥ f j∥L2.

It remains to bound the term (28), but this can be reduced to proving that
for 2µ−10 >C0

√
mn, there exists ε0 > 0 such that

(31)
∥∥Lµ( f1, . . . , fm)

∥∥
L2/m ≲ 2−ε0µ∥Ω∥Lq(Smn−1)

m

∏
j=1

∥ f j∥L2,

which compensate the estimate (30) for µ ≥ 0. Recall that

K̂µ (⃗ξ ) = ∑
γ∈Z

K̂0
µ (⃗ξ/2γ)

and

(32) SuppK̂0
µ ⊂

{⃗
ξ ∈ (Rn)m : 2µ−1 ≤ |⃗ξ | ≤ 2µ+1}.

Using (25), K̂0
µ can be written as

(33) K̂0
µ (⃗ξ ) = ∑

λ∈N0

∑
G⃗∈Iλ

∑
k⃗∈(Zn)m

bλ ,µ

G⃗,⃗k
Ψ

λ
G1,k1

(ξ1) · · ·Ψλ
Gm,km

(ξm)

where
bλ ,µ

G⃗,⃗k
:=

∫
(Rn)m

K̂0
µ (⃗ξ )Ψ

λ

G⃗,⃗k
(⃗ξ )dξ⃗ .

By the vanishing moments of the mother wavelet ψM and (29) we have

(34)
∥∥{bλ ,µ

G⃗,⃗k
}⃗k

∥∥
ℓ∞ ≲ 2−δ µ2−λ (M+1+mn)∥Ω∥Lq(Smn−1)

where M is the number of vanishing moments of ΨG⃗ and 0 < δ < 1/q′; see
[17, Lemma 7] for the related calculation. In addition, (26), the Hausdorff-
Young inequality, and Young’s inequality prove that∥∥{bλ ,µ

G⃗,⃗k
}⃗k

∥∥
ℓq′ ≲ 2−λmn(1/2−1/q′)∥K̂0

µ∥Lq′

≲ 2−λmn(1/q−1/2)∥Ω∥Lq(Smn−1).(35)
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Furthermore, if 2µ−10 >C0
√

mn, then we may replace k⃗ ∈ (Zn)m in (33)
by 2λ+µ−2 ≤ |⃗k| ≤ 2λ+µ+2 due to (32) and the compact support condition
of Ψλ

G⃗,⃗k
. Therefore the proof of (31) can be reduced to the inequality∥∥∥ ∑

λ∈N0

∑
G⃗∈Iλ

∑
γ∈Z

∑
k⃗∈Uλ+µ

bλ ,µ

G⃗,⃗k

m

∏
j=1

Lλ ,γ
G j,k j

f j

∥∥∥
L2/m

≲ 2−ε0µ∥Ω∥Lq(Smn−1)

m

∏
j=1

∥ f j∥L2(36)

where

Uλ+µ :=
{⃗

k ∈ (Zn)m : 2λ+µ−2 ≤ |⃗k| ≤ 2λ+µ+2, |k1| ≥ · · · ≥ |km|
}

and

(37) Lλ ,γ
G,k f :=

(
Ψ

λ
G,k(·/2γ) f̂

)∨
.

Here, it is additionally assumed that |k1| ≥ · · · ≥ |km| in Uλ+µ as the re-
maining cases follow by symmetry and there are at most m! many such
cases. Then we note that Uλ+µ can be expressed as the union of m disjoint
subsets

Uλ+µ

1 := {⃗k ∈ Uλ+µ : |k1| ≥ 2C0
√

n > |k2| ≥ · · · ≥ |km|}

Uλ+µ

2 := {⃗k ∈ Uλ+µ : |k1| ≥ |k2| ≥ 2C0
√

n > |k3| ≥ · · · ≥ |km|}
...

Uλ+µ
m := {⃗k ∈ Uλ+µ : |k1| ≥ · · · ≥ |km| ≥ 2C0

√
n}.

We remark that the case |k1|< 2C0
√

n is excluded because it implies |⃗k|<
2C0

√
mn for which k⃗ is not contained in Uλ+µ as 2µ−10 >C0

√
mn.

The function in the left-hand side of (36) could be written as
m

∑
l=1

∑
λ∈N0

∑
G⃗∈Iλ

∑
γ∈Z

T λ ,γ,µ

G⃗,l

(
f1, . . . , fm

)
where

(38) T λ ,γ,µ

G⃗,l

(
f1, . . . , fm

)
:= ∑

k⃗∈Uλ+µ

l

bλ ,µ

G⃗,⃗k

( m

∏
j=1

Lλ ,γ
G j,k j

f j

)
.

Observe that when k⃗ ∈ Uλ+µ

l ,

(39) Lλ ,γ
G j,k j

f j = Lλ ,γ
G j,k j

f λ ,γ,µ
j for 1 ≤ j ≤ l
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due to the support of Ψλ
G j,k j

, where f̂ λ ,γ,µ
j (ξ j) := f̂ j(ξ j)χC0

√
n2γ−λ≤|ξ j|≤2γ+µ+3 .

Moreover, it is easy to show that for µ ≥ 10 and λ ∈ N0,

(40)
(

∑
γ∈Z

∥∥ f λ ,γ,µ
j

∥∥2
L2

)1/2
≲ (µ +λ )1/2∥ f j∥L2 ≲ µ

1/2(λ +1)1/2∥ f j∥L2

where Plancherel’s identity is applied in the first inequality and the factor
(µ +λ )1/2 is due to the fact that each ξ is contained in C(µ +λ ) annuli of
the form {ξ j ∈ Rn : C0

√
n2γ−λ ≤ |ξ j| ≤ 2γ+µ+3}.

Now we claim that for each 1 ≤ l ≤ m there exists ε0,M0 > 0 such that∥∥∥ ∑
γ∈Z

T λ ,γ,µ

G⃗,l

(
f1, . . . , fm

)∥∥∥
L2/m

≲ ∥Ω∥Lq(Smn−1)2
−ε0µ2−λM0

m

∏
j=1

∥ f j∥L2.(41)

Then the left-hand side of (36) is controlled by a constant times( m

∑
l=1

∑
λ∈N0

∑
G⃗∈Iλ

∥∥∥ ∑
γ∈Z

T λ ,γ,µ

G⃗,l

(
f1, . . . , fm

)∥∥∥2/m

L2/m

)m/2

≲ 2−ε0µ∥Ω∥Lq(Smn−1)

m

∏
j=1

∥ f j∥L2,

which completes the proof of (36). Therefore, it remains to prove (41).

6.1. The case l = 1. We observe first that Proposition 2.4 implies∥∥∥ ∑
γ∈Z

T λ ,γ,µ

G⃗,1

(
f1, . . . , fm

)∥∥∥
L2/m

≤
∥∥∥ ∑

γ∈Z

∣∣T λ ,γ,µ

G⃗,1

(
f1, . . . , fm

)∣∣∥∥∥
L2/m

≲
∥∥{bλ ,µ

G⃗,⃗k

}⃗
k

∥∥
ℓ∞2λmn/2

(
∑
γ∈Z

∥ f γ,λ ,µ
1 ∥L2

) m

∏
j=1

∥ f j∥L2

≲ 2−δ µ2−λ (M+1+mn/2)∥Ω∥Lq(Smn−1)

(
∑
γ∈Z

∥ f λ ,γ,µ
1 ∥L2

) m

∏
j=1

∥ f j∥L2 .

It is unlikely that we can bound ∑γ∈Z ∥ f λ ,γ,µ
1 ∥L2 by ∥ f1∥L2 easily. On the

other hand, since f1 is a Schwartz function, we have∥∥∥ f λ ,γ,µ
1

∥∥∥
L2

=
∥∥∥ f̂ λ ,γ,µ

1

∥∥∥
L2

=
(∫

C0
√

n2γ−λ≤|ξ |≤2γ+µ+3
| f̂1(ξ )|2dξ

)1/2

≲N

{
2(γ+µ)n/2, γ < 0
2−(γ−λ )(N−n/2), γ ≥ 0

(42)

for sufficiently large N > n/2, which yields that

∑
γ∈Z

∥ f λ ,γ,µ
1 ∥L2
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is finite (of course, this depends on λ , µ , and f1). Therefore, we also have

(43) ∑
γ∈Z

T λ ,γ,µ

G⃗,1

(
f1, . . . , fm

)
∈ L2/m

To improve the previous argument, we will use the square function char-
acterization of Hardy spaces, which relies on the fact that if ĝγ is supported
on {ξ ∈ Rn : C−12γ+µ ≤ |ξ | ≤C2γ+µ} for some C > 1 and µ ∈ Z, then

(44)
∥∥∥{Φ

(1)
j ∗

(
∑
γ∈Z

gγ

)}
j∈Z

∥∥∥
Lp(ℓq)

≲C
∥∥{g j

}
j∈Z

∥∥
Lp(ℓq)

uniformly in µ

for 0 < p < ∞. The proof of (44) is elementary and standard, so we just
provide a sketch of that. Due to the Fourier support conditions of both Φ

(1)
j

and gγ , the left-hand side of (44) would be

∥∥∥{Φ
(1)
j ∗

( j−µ+C′

∑
γ= j−µ−C′

gγ

)}
j∈Z

∥∥∥
Lp(ℓq)

for some constant C′ > 1. Then we use the estimate that for any r > 0 and
j−µ −C′ ≤ γ ≤ j−µ +C′,∣∣Φ(1)

j ∗gγ(x)
∣∣≲r,C′ 2 j(n/r−n)

(∫
Rn

∣∣Φ(1)
j (x− y)

∣∣r∣∣gγ(y)
∣∣r dy

)1/r
≲Mrgγ(x)

uniformly in µ , where Bernstein’s inequality is applied in the first estimate.
Here, Mrgγ :=

(
M(|gγ |r)

)1/r and M is the Littlewood-Paley maximal op-
erator as before. Then (44) follows from choosing 0< r < p,q and applying
Fefferman-Stein’s maximal inequality for Mr. See [17, (13)] and [37, The-
orem 3.6] for a related argument.

Note that

2λ+µ−3 ≤ 2λ+µ−2−2C0
√

mn≤ |⃗k|−(|k2|2+· · ·+|km|2)1/2 ≤ |k1| ≤ 2λ+µ+2

and this implies that

Supp
(
Ψ

λ
G1,k1

(·/2γ)
)
⊂ {ξ ∈ Rn : 2γ+µ−4 ≤ |ξ | ≤ 2γ+µ+3}.

Moreover, since |k j| ≤ 2C0
√

n for 2 ≤ j ≤ m and 2µ−10 >C0
√

mn,

Supp
(
Ψ

λ
G j,k j

(·/2γ)
)
⊂ {ξ ∈ Rn : |ξ | ≤ m−1/22γ+µ−8}.

Therefore, the Fourier transform of T λ ,γ,µ

G⃗,1

(
f1, . . . , fm

)
is supported in the

set {ξ ∈ Rn : 2γ+µ−5 ≤ |ξ | ≤ 2γ+µ+4} due to the definitions (37) and (38).
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Using the Littlewood-Paley theory for Hardy spaces [16, Theorem 2.2.9],
there exists a unique polynomial Qλ ,µ ,⃗G(x) such that∥∥∥ ∑

γ∈Z
T λ ,γ,µ

G⃗,1

(
f1, . . . , fm

)
−Qλ ,µ ,⃗G

∥∥∥
L2/m

≲
∥∥∥{Φ

(1)
j ∗

(
∑
γ∈Z

T λ ,γ,µ

G⃗,1

(
f1, . . . , fm

))}
j∈Z

∥∥∥
L2/m(ℓ2)

(45)

and then (44) and (39) yield that the above L2/m(ℓ2)-norm is dominated by
a constant multiple of∥∥∥( ∑

γ∈Z

∣∣T λ ,γ,µ

G⃗,1

(
f λ ,γ,µ
1 , f2, . . . , fm

)∣∣2)1/2∥∥∥
L2/m

.

We now apply Proposition 2.4, (34), and (40) to bound the L2/m-norm by

∥∥{bλ ,µ

G⃗,⃗k

}⃗
k

∥∥
ℓ∞2λmn/2

(
∑
γ∈Z

∥∥ f λ ,γ,µ
1

∥∥2
L2

)1/2 m

∏
j=2

∥ f j∥L2

≲ ∥Ω∥Lq(Smn−1)2
−δ µ

µ
1/22−λ (M+1+mn/2)(λ +1)1/2

m

∏
j=1

∥ f j∥L2.

This implies that the left-hand side of (45) is bounded by

∥Ω∥Lq(Smn−1)2
−ε0µ2−λM0

m

∏
j=1

∥ f j∥L2

for some 0 < ε0 < δ and 0 < M0 < M+1+mn/2, and thus

(46) ∑
γ∈Z

T λ ,γ,µ

G⃗,1

(
f1, . . . , fm

)
−Qλ ,µ ,⃗G ∈ L2/m.

Recalling that ∑γ∈ZT
λ ,γ,µ

G⃗,1

(
f1, . . . , fm

)
∈ L2/m, the polynomial Qλ ,µ ,⃗G in

(46) should be zero. In conclusion,∥∥∥ ∑
γ∈Z

T λ ,γ,µ

G⃗,1

(
f1, . . . , fm

)∥∥∥
L2/m

≲ ∥Ω∥Lq(Smn−1)2
−ε0µ2−λM0

m

∏
j=1

∥ f j∥L2.

This proves (41) for l = 1.
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6.2. The case 2 ≤ l ≤ m. We apply (39), Proposition 2.4 with 2 < q′ <
2m

m−1 , (40), (34), and (35) to obtain that∥∥∥ ∑
γ∈Z

T λ ,γ,µ

G⃗,l

(
f1, . . . , fm

)∥∥∥
L2/m

≤
∥∥∥ ∑

γ∈Z

∣∣T λ ,γ,µ

G⃗,l

(
f1, . . . , fm

)∣∣∥∥∥
L2/m

≲
∥∥{bλ ,µ

G⃗,⃗k

}⃗
k

∥∥1− (m−1)q′
2m

ℓ∞

∥∥{bλ ,µ

G⃗,⃗k

}⃗
k

∥∥ (m−1)q′
2m

ℓq′ 2λmn/2(λ +1)l/2
µ

l/2
m

∏
j=1

∥ f j∥L2

≲ ∥Ω∥Lq(Smn−1)2
−δ µ(1− (m−1)q′

2m )
µ

m/22−λCM,m,n,q(λ +1)m/2
m

∏
j=1

∥ f j∥L2

(47)

where

CM,m,n,q := (M+1+mn)(1− (m−1)q′

2m
)+mn(1/q−1/2)

(m−1)q′

2m
− mn

2
.

Here we used the embedding ℓq′ ↪→ ℓ∞ and the fact that l−1
2l ≤ m−1

2m . Then
(41) follows from choosing M sufficiently large so that CM,m,n,q > 0 since
1− (m−1)q′

2m > 0.

7. PROOF OF THEOREM 1.3

The strategy in this section is similar to that used in handling multilin-
ear rough singular integrals in Section 6, but the decomposition is more
delicate. We describe the decomposition first. Write

σ (⃗ξ ) = ∑
γ∈Z

σγ (⃗ξ/2γ)

where σγ (⃗ξ ) := σ(2γ ξ⃗ )Φ̂(m)(⃗ξ ). Clearly,

(48) Supp(σγ)⊂ {⃗ξ ∈ (Zn)m : 1/2 ≤ |⃗ξ | ≤ 2}

and according to (25),

(49) σγ (⃗ξ ) = ∑
λ∈N0

∑
G⃗∈Iλ

∑
k⃗∈(Zn)m

bλ ,γ

G⃗,⃗k
Ψ

λ
G1,k1

(ξ1) · · ·Ψλ
Gm,km

(ξm)

where bλ ,γ

G⃗,⃗k
:=

∫
(Rn)m σγ (⃗ξ )Ψ

λ

G⃗,⃗k
(⃗ξ )dξ⃗ . Moreover, it follows from (26) that

for 1 < q < ∞ and s ≥ 0

(50)
∥∥{bλ ,γ

G⃗,⃗k
}⃗k∈(Zn)m

∥∥
ℓq ≲ 2−λ (s−mn/q+mn/2)∥∥σ(2γ ·⃗ )Φ̂(m)

∥∥
Lq

s ((Rn)m)
.

As we did in the proof of Theorem 1.2, it is enough to consider only the
case |k1| ≥ · · · ≥ |km|. Therefore, we replace k⃗ ∈ (Zn)m in (49) by k⃗ ∈ U :=
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{⃗k ∈ (Zn)m : |k1| ≥ · · · ≥ |km|} and write

σγ (⃗ξ ) = ∑
λ∈N0:2λ≥28C0m

√
n

∑
G⃗∈Iλ

∑
k⃗∈U

bλ ,γ

G⃗,⃗k
Ψ

λ
G1,k1

(ξ1) · · ·Ψλ
Gm,km

(ξm)

+ ∑
λ∈N0:2λ<28C0m

√
n

∑
G⃗∈Iλ

∑
k⃗∈U

bλ ,γ

G⃗,⃗k
Ψ

λ
G1,k1

(ξ1) · · ·Ψλ
Gm,km

(ξm)

=: σ
(1)
γ (⃗ξ )+σ

(2)
γ (⃗ξ ).

We are only concerned with σ
(1)
γ as a similar and simpler argument is ap-

plicable to the other one since the sum over λ in σ
(2)
γ is finite sum.

If 28C0m
√

n ≤ 2λ , then bλ ,γ

G⃗,⃗k
vanishes unless 2λ−2 ≤ |⃗k| ≤ 2λ+2 due to

(48) and the compact support of ΨG⃗. Thus, letting

Uλ := {⃗k ∈ U : 2λ−2 ≤ |⃗k| ≤ 2λ+2},
we write

σ
(1)
γ (⃗ξ ) = ∑

λ :2λ≥28C0m
√

n
∑

G⃗∈Iλ

∑
k⃗∈Uλ

bλ ,γ

G⃗,⃗k
Ψ

λ
G1,k1

(ξ1) · · ·Ψλ
Gm,km

(ξm).

Now we split Uλ into m disjoint subsets

Uλ
1 := {⃗k ∈ Uλ : |k1| ≥ 2C0

√
n > |k2| ≥ · · · ≥ |km|}

Uλ
2 := {⃗k ∈ Uλ : |k1| ≥ |k2| ≥ 2C0

√
n > |k3| ≥ · · · ≥ |km|}

...
Uλ

m := {⃗k ∈ Uλ : |k1| ≥ · · · ≥ |km| ≥ 2C0
√

n}
and accordingly,

σ
(1)
γ (⃗ξ ) =

m

∑
l=1

σ
(1)
γ,l (⃗ξ )

where

σ
(1)
γ,l (⃗ξ ) := ∑

λ :2λ≥28C0m
√

n
∑

G⃗∈Iλ

∑
k⃗∈Uλ

l

bλ ,γ

G⃗,⃗k
Ψ

λ
G1,k1

(ξ1) · · ·Ψλ
Gm,km

(ξm).

Then it is enough to show that for each 1 ≤ l ≤ m∥∥∥ ∑
λ :2λ≥28C0m

√
n

∑
G⃗∈Iλ

∑
γ∈Z

∑
k⃗∈Uλ

l

bλ ,γ

G⃗,⃗k

( m

∏
j=1

Lλ ,γ
G j,k j

f j

)∥∥∥
L2/m

≲ sup
j∈Z

∥∥σ(2 j ·⃗ )Φ̂(m)
∥∥

Lq
s ((Rn)m)

m

∏
j=1

∥ f j∥L2(51)

where Lλ ,γ
G,k is defined as in (37).
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Observe that if |k| ≥ 2C0
√

n and |2λ−γξ − k| ≤C0
√

n, then

C0
√

n ≤ |k|−C0
√

n ≤ 2λ−γ |ξ | ≤ |k|+C0
√

n ≤ 2λ+2 +C0
√

n ≤ 2λ+3,

which implies

(52) Lλ ,γ
G,k f (x) = Lλ ,γ

G,k f λ ,γ(x)

where f λ ,γ :=
(

f̂ χC0
√

n2γ−λ≤|·|≤2γ+3

)∨. Furthermore, a direct computation
with Plancherel’s idendity proves

(53)
(

∑
γ∈Z

∥ f λ ,γ∥2
L2

)1/2
≲C0 (λ +3)1/2∥ f∥L2.

Let

T
λ ,γ

l ,⃗G
( f1, . . . , fm)(x) := ∑

k⃗∈Uλ
l

bλ ,γ

G⃗,⃗k

( l

∏
j=1

Lλ ,γ
G j,k j

f λ ,γ
j (x)

)( m

∏
j=l+1

Lλ ,γ
G j,k j

f j(x)
)
.

Then, due to (52), the left-hand side of (51) is less than

(54)
(

∑
λ :2λ≥28C0m

√
n

∑
G⃗∈Iλ

∥∥∥ ∑
γ∈Z

T
λ ,γ

l ,⃗G
( f1, . . . , fm)

∥∥∥2/m

L2/m

)m/2

.

We claim that for 1 ≤ l ≤ m there exists a constant C > 0 such that∥∥∥ ∑
γ∈Z

T
λ ,γ

l ,⃗G
( f1, . . . , fm)

∥∥∥
L2/m

≤C2−λ (s−max( (m−1)n
2 ,mn

q ))(λ +3)m(55)

× sup
j∈Z

∥∥σ(2 j ·⃗ )Φ̂(m)
∥∥

Lq
s ((Rn)m)

m

∏
j=1

∥ f j∥L2,

which clearly implies that (54) is majorized by the right-hand side of (51)
as (

∑
λ :2λ≥28C0m

√
n

2−
2λ

m (s−max( (m−1)n
2 ,mn

q ))(λ +3)2
)m/2

< ∞,

which is due to the assumption s > max( (m−1)n
2 , mn

q ).
Therefore, let us prove (55).

7.1. The case l = 1. We utilize the Littlewood-Paley theory for Hardy
spaces as in Section 6. There exists a unique polynomial Qλ ,⃗G(x) such
that ∥∥∥ ∑

γ∈Z
T

λ ,γ

1,⃗G
( f1, . . . , fm)−Qλ ,⃗G

∥∥∥
L2/m

≲
∥∥∥{Φ

(m)
j ∗

(
∑
γ∈Z

T
λ ,γ

1,⃗G
( f1, . . . , fm)

)}
j∈Z

∥∥∥
L2/m(ℓ2)

.(56)
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Note that

2λ−3 ≤ 2λ−2−2C0
√

mn ≤ |⃗k|− (|k2|2+ · · ·+ |km|2)1/2 ≤ |k1| ≤ |⃗k| ≤ 2λ+2

and this proves that

Supp
(
Ψ

λ
G1,k1

(·/2γ)
)
⊂ {ξ ∈ Rn : 2γ−4 ≤ |ξ | ≤ 2γ+3}.

Moreover, since |k j| ≤ 2C0
√

n for 2 ≤ j ≤ m,

Supp
(
Ψ

λ
G j,k j

(·/2γ)
)
⊂ {ξ ∈ Rn : |ξ | ≤ 2−6m−12γ}.

Therefore, the Fourier transform of Tλ ,γ

1,⃗G
( f1, . . . , fm) is supported in the set

{ξ ∈Rn : 2γ−5 ≤ |ξ | ≤ 2γ+4} and the technique of (44) yields that the right-
hand side of (56) is dominated by a constant times∥∥∥( ∑

γ∈Z

∣∣Tλ ,γ

1,⃗G
( f1, . . . , fm)

∣∣2)1/2∥∥∥
L2/m

.

The L2/m-norm is bounded by

sup
γ∈Z

∥∥{bλ ,γ

G⃗,⃗k
}⃗k∈(Zn)m

∥∥
ℓ∞2λmn/2

(
∑
γ∈Z

∥ f λ ,γ
1 ∥2

L2

)1/2 m

∏
j=2

∥ f j∥L2

thanks to Proposition 2.4. The embedding ℓq ↪→ ℓ∞ and (50) imply
(57)

sup
γ∈Z

∥∥{bλ ,γ

G⃗,⃗k
}⃗k∈(Zn)m

∥∥
ℓ∞ ≲ 2−λ (s−mn/q+mn/2) sup

j∈Z

∥∥σ(2 j ·⃗ )Φ̂(m)
∥∥

Lq
s ((Rn)m)

.

This, together with (53), finally proves that the left-hand side of (56) is
dominated by a constant multiple of

2−λ (s−mn/q)(λ +3)1/2 sup
j∈Z

∥∥σ(2 j ·⃗ )Φ̂(m)
∥∥

Lq
s ((Rn)m)

m

∏
j=1

∥ f j∥L2

and accordingly,

∑
γ∈Z

T
λ ,γ

1,⃗G
( f1, . . . , fm)−Qλ ,⃗G ∈ L2/m.

Moreover, Proposition 2.4, together with (57), yields that∥∥∥ ∑
γ∈Z

T
λ ,γ

1,⃗G
( f1, . . . , fm)

∥∥∥
L2/m

≤
∥∥∥ ∑

γ∈Z

∣∣Tλ ,γ

1,⃗G
( f1, . . . , fm)

∣∣∥∥∥
L2/m

≲ 2−λ (s−mn/q)
(

∑
γ∈Z

∥ f λ ,γ
1 ∥L2

) m

∏
j=2

∥ f j∥L2
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and, similarly to (42), we have

∥ f λ ,γ
1 ∥L2 =

[∫
C0

√
n2γ−λ≤|ξ |≤2γ+3

| f̂1(ξ )|2dξ

] 1
2

≲N

{
2(γ+3)n/2, γ < 0
2−(γ−λ )(N−n/2) γ ≥ 0

for sufficiently large N > n/2. Using the argument that led to (43), we see
that

∑
γ∈Z

T
λ ,γ

1,⃗G
( f1, . . . , fm) ∈ L2/m

and thus Qλ ,⃗G = 0. Then the inequality (55) for l = 1 follows.

7.2. The case 2 ≤ l ≤ m. If 0 < q < 2l
l−1 , we simply apply Proposition 2.4

to have∥∥∥ ∑
γ∈Z

T
λ ,γ

l ,⃗G
( f1, . . . , fm)

∥∥∥
L2/m

≲ sup
γ∈Z

∥∥{bλ ,γ

G⃗,⃗k
}⃗k∈(Zn)m

∥∥
ℓq2λmn/2

[ l

∏
j=1

(
∑
γ∈Z

∥ f λ ,γ
j ∥2

L2

)1/2][ m

∏
j=l+1

∥ f j∥L2

]
where the embedding ℓq ↪→ ℓ∞ is applied. Then the last expression is no
more than a constant multiple of

2−λ (s−mn/q)(λ +3)l/2 sup
j∈Z

∥∥σ(2 j ·⃗ )Φ̂(m)
∥∥

Lq
s ((Rn)m)

m

∏
j=1

∥ f j∥L2

by using (50) and (53). Then (55) follows.
If 2l

l−1 ≤ q<∞, applying the third statement of Proposition 2.4, we obtain∥∥∥ ∑
γ∈Z

T
λ ,γ

l ,⃗G
( f1, . . . , fm)

∥∥∥
L2/m

≲ Eq,l,λ 2−λ (s−mn/q+mn/2)2λmn/2 sup
j∈Z

∥∥σ(2 j ·⃗ )Φ̂(m)
∥∥

Lq
s ((Rn)m)

×
l

∏
j=1

(
∑
γ∈Z

∥ f λ ,γ
j ∥2

L2

)1/2( m

∏
j=l+1

∥ f j∥L2

)
where

Eq,l,λ :=

{
λ l/2, q = 2l

l−1
2λn(l/2−l/q−1/2), q > 2l

l−1
.

Noticing that
(

∑γ∈Z ∥ f λ ,γ
j ∥2

L2

)1/2
≲ (λ + 3)1/2∥ f j∥L2, we finally obtain

that∥∥∥ ∑
γ∈Z

T
λ ,γ

l ,⃗G
( f1, . . . , fm)

∥∥∥
L2/m

≲ F(s,m,n)
q,l,λ sup

j∈Z

∥∥σ(2 j ·⃗ )Φ̂(m)
∥∥

Lq
s ((Rn)m)

m

∏
j=1

∥ f j∥L2
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where
F(s,m,n)

q,l,λ := Eq,l,λ 2−λ (s−mn/q)(λ +3)l/2.

It is easy to check that for 2 ≤ l ≤ m and 2l
l−1 ≤ q

F(s,m,n)
q,l,λ ≲ 2−λ (s−max( (m−1)n

2 ,mn
q ))(λ +3)m

and the proof of (55) is complete.

8. CONCLUDING REMARKS

In this article we focused on the L2 × ·· ·×L2 → L2/m boundedness for
several fundamental m-linear operators. In future work we plan to obtain
similar initial estimates for maximal singular integrals and maximal multi-
pliers.

The L2 ×·· ·×L2 estimates obtained in this paper provide crucial initial
bounds that provide the cornerstone needed to launch a complete bound-
edness study on general products of Lebesgue spaces. Certainly our initial
estimates can be extended to include points obtained by duality and inter-
polation; these are called local L2 points. For the remaining points there are
techniques available, for instance, interpolation between dyadic pieces of an
operator between good local L2 points and bad points near the boundary of
the region 1 < p1, . . . , pm < ∞, 1/m < p < ∞; this technique was developed
in [17] in the bilinear case. We chose not to pursue this line of investiga-
tion here in order to direct our focus on the idea of wavelet expansions and
shorten the exposition. We plan to pursue general Lp1 × ·· · × Lpm → Lp

boundedness for many multilinear operators in subsequent work. It should
be mentioned that in a recent manuscript of Heo, Lee, Hong, Yang, Lee, and
Park [25] the extension to the full range of indices was obtained for Theo-
rem 1.3, when q = 2, although the case of general q remains unresolved.
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[5] R. R. Coifman and Y. Meyer, On commutators of singular integrals and bilinear
singular integrals, Trans. Amer. Math. Soc. 212 (1975), 315–331.

[6] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis,
Bull. Amer. Math. Soc. 83 (1977) 569-645.

[7] J. M. Conde-Alonso, A. Culiuc, F. Di Plinio, and Y. Ou, A sparse domination princi-
ple for rough singular integrals, Anal. PDE 10 (2017), 1255–1284.

[8] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure
Appl. Math. 41 (1988) 909-996.

[9] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series in
Applied Mathematics, 61. Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA (1992).

[10] F. Di Plinio, K. Li, H. Martikainen, and E. Vuorinen, Multilinear operator-valued
Calderón-Zygmund theory, J. Funct. Anal. 279 (2020), 62 pp.

[11] F. Di Plinio, K. Li, H. Martikainen, and E. Vuorinen, Multilinear singular integrals
on non-commutative Lp spaces, Math. Ann. 378 (2020), 1371–1414.

[12] F. Di Plinio, B. Wick, and T. Williams, Wavelet representation of singular integral
operators, arXiv preprint arXiv:2009.01212.

[13] J. Duoandikoetxea, Fourier analysis, Graduate Studies in Mathematics, 29, American
Mathematical Society, Providence, RI, 2001.

[14] J. Duoandikoetxea and J.-L. Rubio de Francia, Maximal and singular integral opera-
tors via Fourier transform estimates, Invent. Math. 84 (1986) 541-561.

[15] T. Hytönen and S. Lappas, Dyadic representation theorem using smooth wavelets
with compact support, arXiv preprint arXiv:2003.04019.

[16] L. Grafakos, Modern Fourier Analysis., 3rd Ed., GTM 250, Springer NY, 2014.
[17] L. Grafakos, D. He, and P. Honzı́k, Rough bilinear singular integrals, Adv. Math.

326 (2018) 54-78.
[18] L. Grafakos, D. He, and P. Honzı́k, The Hörmander multiplier theorem, II : The

bilinear local L2 case, Math. Zeit. 289 (2018) 875-887.
[19] L. Grafakos, D. He, and L. Slavı́ková, L2 × L2 → L1 boundedness criteria, Math.
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